Quicksearch Your search for pokemon returned 6 results:

The Further Adventures of Pokemon Go

using the appFollowing up on my earlier post about the current Pokémon Go craze and whether it might have any educational uses, I have since seen more posts about the possible uses of the app.



Teachers Explore Uses of Pokémon Go With Autistic Students - Teaching Now The phenomena of the mobile game Pokémon Go has been touted for its learning possibilities. It might also have particular benefits for children with autism.



Evaluating the Power of Pokémon Go: Q&A with James Gee - Digital Education James Gee, a pioneer of educational video game theory, talks about the benefits and potential downsides of the Pokémon Go phenomenon.



As Pokémon Go Becomes a Sensation, Ed. Experts Weigh Pros and Cons - Digital Education Proponents point to increased attention to cultural landmarks and opportunities to weave math and reading into the game, but skeptics raise concerns about data privacy and pricing.



 


Wizards Unite in Augmented Reality

The Wizarding World of Harry Potter: This Way To Hogwarts

Remember all the coverage in summer 2016 around Pokémon Go?  It was a big success for Niantic Labs. It was a great pairing of game design, location-based augmented reality mobile experience with some intellectual property that had a solid fan base. But not much happened in the popular space with AR since then.

I am not going out on a limb to predict that the big AR title for 2018 will probably be Harry Potter: Wizards Unite, an AR title being co-developed by Niantic and Warner Bros. Interactive's Portkey Games.

Harry Potter has a bigger fan base than the original Pokémon and author J.K. Rowling has kept a close watch on the quality of things based on her Wizarding World. Using mobile phones and AR for a scavenger hunt in our real Muggle world and using that phone to cast spells, and find objects, fantastic beasts and characters from the book series is very likely to give Niantic another hit.  

Some people touted Pokémon Go for getting kids outside as they wandered neighborhoods, parks and other places. Some people complained that these kids were tramping around their property. 

This gaming use of AR with kids (and some older kids) is certainly wonderful preparation for more serious marketing use of AR for shopping experiences, as well as for virtual tours in museums and other more serious applications.

Niantic raised $30 million in funding for Pokémon Go. This time they have $200 million in a funding round, from investors for Wizards Unite.  That kind of money will mean work as well as a few Aberto and Alohomora  spells at opening the AR money door.

The Augmented Reality of Pokémon Go

Go
People have been searching for creatures and running down their phone batteries this month since Pokémon Go was released.
Is there any connection of this technology to education, Ken? Let's see.

First off, Pokémon Go is a smartphone game that uses your phone’s GPS and clock to detect where and when you are in the game and make Pokémon creatures appear around you on the screen. The objective is to go and catch them.

This combination of a game and the real world interacting is known as augmented reality (AR). AR is often confused with VR - virtual reality. VR creates a totally artificial environment, while augmented reality uses the existing environment and overlays new information on top of it.

The term augmented reality goes back to 1990 and a Boeing researcher, Thomas Caudell, who used it to describe the use of head-mounted displays by electricians assembling complicated wiring harnesses.

A commercial applications of AR technology that most people have seen is the yellow "first down" line that we see on televised football games which, of course, is not on the actual field.

Google Glass and the displays called "heads-up" in car windshields are another consumer AR application. there are many more uses of the technology in industries like healthcare, public safety, gas and oil, tourism and marketing.

Back to the game... My son played the card game and handheld video versions 20 years ago, so I had a bit of Pokémon education. I read that it is based on the hobby of bug catching which is apparently popular in Japan, where the games originated. Like bug catching or birding, the goal is to capture actual bugs or virtual birds and Pokémon creatures and add them to your life list. The first generation of Pokémon games began with 151 creatures and has expanded to 700+, but so far only the original 151 are available in the Pokémon Go app.

I have seen a number of news reports about people doing silly, distracted things while playing the game, along with more sinister tales of people being lured by someone via a creature or riding a bike or driving while playing. (The app has a feature to try to stop you using from it while moving quickly, as in a car.)

Thinking about educational applications for the game itself doesn't yield anything for me. Although it does require you to explore your real-world environment, the objective is frivolous. So, what we should consider is the use of VR in education beyond the game, while appreciating that the gaming aspect of the app is what drives its appeal and should be used as a motivator for more educational uses.
AR
The easiest use of VR in college classrooms is to make use of the apps already out there in industries. Students in an engineering major should certainly be comfortable with understanding and using VR from their field. In the illustration above, software (metaio Engineer) allows someone to see an overlay visualization of future facilities within the current environment. Another application can be having work and maintenance instructions directly appear on a component when it is viewed.
Augmented reality can be a virtual world, even a MMO game. The past year we have heard more about virtual reality and VR headsets and goggles (like Oculus Rift) which are more immersive, but also more awkward to use.This immersiveness is an older concept and some readers may recall the use of the term "telepresence.” 

Telepresence referred to a set of technologies which allowed a person to feel as if they were present, or to to give the appearance of being present, or to have some impact at place other than their true location. Telerobotics does this, but more commonly it was the move from videotelephony to videoconferencing. Those applications have been around since the end of the last century and we have come a god way forward from traditional videoconferencing to doing it with hand-held mobile devices, enabling collaboration independent of location.

In education, we experimented with these applications and with the software for MMOs, mirror worlds, augmented reality, lifelogging, and products like Second Life. Pokémon Go is Second Life but now there is no avatar to represent us. We are in the game and the game is the world around us, augmented as needed. The world of the game is the world.

Fantastic Augmented Reality and Where to Find It

pokemon

Pokémon Go was big last summer, but it was a flash in the tech pan. It couldn't scale. But it was a big augmented reality (AR) game that was mobile and required no additional hardware - especially the odd-looking goggles we currently associate with virtual reality. The game was platform agnostic. It used location services to geo-locate players with a virtual world. It worked.

I never played Pokémon Go, but I did observe others playing. For those of you who also didn't participate, here's what it is all about.

Your avatar is displayed on a map using the player's current geographical location. There are PokéStops that provide players with items, such as eggs, Poké Balls, berries, potions and lure modules which attract additional wild, and sometimes rare, Pokémon. These stops and battle locations (gyms) are re-purposed portals from Ingress, developer Niantic's previous augmented reality game. 

In AR mode the game uses the camera and gyroscope on the player's mobile device to display an image of a Pokémon as though it were in the real world.

beasts

I can certainly see more game applications for AR. I would pursue the rights to the Harry Potter world's latest franchise whose name itself suggests an AR game: Fantastic Beasts and Where to Find Them.  

But is this all we can expect from augmented reality? 

Its use in education has been limited, but it has been used to superimpose text, graphics, video and audio into a student’s real time environment. As a kind of supercharged QR code, in textbooks and in real spaces, such as museums and physical displays, material can be embedded using “markers” that trigger when scanned by an AR device and supply supplementary multimedia materials.

NASA

Using AR for more serious purposes is not that new. In 2000, NASA's X38 display (shown here) had a video map with overlays including runways and obstacles for use during flight tests. 

The applications for AR are numerous. For architects and builders, AR can aid in visualizing building projects. Computer-generated images of a structure can be superimposed into a real life local view of a property before the physical building is constructed there. It can be used before any construction begins while architects are rendering into their view animated 3D visualizations of their 2D drawings. 

Similarly, AR allows industrial designers to experience a product's design and operation before completion. Volkswagen used AR for comparing calculated and actual crash test imagery and to visualize and modify car body structure and engine layout. AR was also be used to compare digital mock-ups with physical mock-ups for finding discrepancies between them.

3D

We are not there yet, but in education AR should become more common and more interactive. Computer-generated simulations of existing places and historical events. In higher education, applications such as Construct3D, are used to help learn mechanical engineering concepts, math or geometry. 

Primary school children using interactive AR experiences will probably end up in high schools and colleges using AR and VR in ways we can't quite imagine today. AR technology in the classroom will be integrated, rather than a novelty, and mixing real life and virtual elements will feel more natural. 


Virtual Reality Education and Flying Cars

holodeck

The Holodeck

People love to use the prediction that we would all be using flying cars by the 21st century as an example of a future technology that never happened. Remember how virtual reality and the augmented reality was going to change everything? So far, it's not.

Last summer, Pokemon Go was huge and even though many people would dismiss it as a silly game, it was AR and seemed like it might change gaming and who knows what else. The promise, or perhaps more accurately the potential, of VR in education is also a popular topic. 

We know that the Internet enabled students to access materials from other institutions and to travel to distant places for their research. Virtual reality may one day change the ways in which we teach and learn. That has me thinking about "virtual reality education" - something I imagine to be unbound by physical spaces like classrooms or campuses and time.That sounds like online learning, but it would be beyond the online learning.

Remember the "holodeck?" Originally, it was a set from the television series Star Trek where the crew could engage with different virtual reality environments. It came back into my view with Janet Murray's book Hamlet on the Holodeck: The Future of Narrative in Cyberspace. She considered whether the computer might provide the basis for an expressive narrative form in the way that print technology supported the development of the novel. In the 20th century, film technology supported the development of movies. 

And remember virtual worlds like Second Life and Active Worlds? I knew a number of educators and schools that made a real commitment to its use in education. I don't know of any of them that are still using virtual worlds.

I'm hopeful that VR, AR, or some version of a holodeck or virtual world will some day enhance education, but so far, I'm still operating in Reality Reality.