Humans Learning About Machines Learning

GoDeep learning might sound like that time when we get really serious about what we are thinking about, and go deeper into the subject and learning. But it is not about the human brain. It is about machine learning. Also known as deep structured learning or hierarchical learning, it is part of the study of machine learning methods. It is about machines getting smarter on their own as they complete tasks.

The theories do look at biological nervous systems as models. Neural coding attempts to define a relationship between various stimuli and associated neuronal responses in the brain The terms used are many. Deep learning architecture, deep neural networks, deep belief networks and recurrent neural networks are all labels used in computer vision, speech recognition, natural language processing, audio recognition, social network filtering, machine translation, bioinformatics and drug design. That means a machine is producing results instead of human experts.

Google's artificial intelligence software, DeepMind, has gotten a fair amount of press coverage. It has the ability to teach itself many things, including how to walk, jump, and run. In the press, it will defeat the world's best player of the Chinese strategy game, Go, but deep learning is more serious than that.

You can take a free, 3-month course on Deep Learning offered through Udacity, taught by Vincent Vanhoucke, the technical lead in Google's Brain team.

Machine learning is a fast-growing and exciting field of study and deep learning is at its "bleeding edge. This course is considered to be an "intermediate to advanced level course offered as part of the Machine Learning Engineer Nanodegree program. It assumes you have taken a first course in machine learning, and that you are at least familiar with supervised learning methods."

Should You Be Teaching Systems Thinking?

An article I read suggests that systems thinking could become a new liberal art and prepare students for a world where they will need to compete with AI, robots and machine thinking. What is it that humans can do that the machines can't do?

Systems thinking grew out of system dynamics which was a new thing in the 1960s. Invented by an MIT management professor, Jay Wright Forrester,  it took in the parallels between engineering, information systems and social systems.

Relationships in dynamic systems can both amplify or balance other effects. I always found examples of this too technical and complex for my purposes in the humanities, but the basic ideas seemed to make sense.

One example from environmentalists seems like a clearer one. Most of us can see that there are connections between human systems and ecological systems. Certainly, discussions about climate change have used versions of this kind of thinking to make the point that human systems are having a negative effect on ecological systems. And you can look at how those changed ecological systems are then having effect on economic and industrial systems.

Some people view systems thinking as something we can do better, at lest currently, than machines. That means it is a skill that makes a person more marketable. Philip D. Gardner believes that systems thinking is a key attribute of the "T-shaped professional." This person is deep as well as broad, with not only a depth of knowledge in an area of expertise, but also able to work and communicate across disciplines.  

coverJoseph E. Aoun believes that systems thinking will be a "higher-order mental skill" that gives humans an edge over machines. 

But isn't it likely that machines that learn will also be programmed one day to think across systems? Probably, but Aoun says that currently "the big creative leaps that occur when humans engage in it are as yet unreachable by machines." 

When my oldest son was exploring colleges more than a decade ago, systems engineering was a major that I thought looked interesting. It is an interdisciplinary field of engineering and engineering management. It focuses on how to design and manage complex systems over their life cycles.

If systems thinking grows in popularity, it may well be adopted into existing disciplines as a way to connect fields that are usually in silos and don't interact. Would behavioral economics qualify as systems thinking? Is this a way to make STEAM or STEM actually a single thing?

 


David Peter Stroh, Systems Thinking for Social Change

Joseph E. Aoun, Robot-Proof: Higher Education in the Age of Artificial Intelligence